|
In arithmetic geometry, the Faltings product theorem gives sufficient conditions for a subvariety of a product of projective spaces to be a product of varieties in the projective spaces. It was introduced by in his proof of Lang's conjecture that subvarieties of an abelian variety containing no translates of non-trivial abelian subvarieties have only finitely many rational points. and gave explicit versions of the Falting product theorem. ==References== * * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Faltings' product theorem」の詳細全文を読む スポンサード リンク
|